The development of photothermal agents (PTAs) with robust photostability and high photothermal conversion efficiency is of great importance for cancer photothermal therapy. Herein, a novel PTA was created using two-dimensional intermetallic PtSnBi nanoplates (NPs), which demonstrated excellent photostability and biocompatibility with a high photothermal conversion efficiency of ~61% after PEGylation. More importantly, PtSnBi NPs could be employed as photoacoustic imaging contrast agents for tumor visualization due to their strong absorbance in the NIR range. In addition, both in vitro and in vivo experiments confirmed that PtSnBi NPs had a good photothermal efficacy under NIR laser irradiation. Therefore, the remarkable therapeutic characteristics of PtSnBi NPs make them make them a most promising candidate for cancer theranostics.