Objective: To explore the metabolic characteristics of arthritis and enthesitis using multispectral opto-acoustic tomography (MSOT), a technology using near-infrared multispectral laser to stimulate tissues and detect the emitted acoustic energy, enabling non-invasive quantification of tissue components in vivo based on differential absorbance at multiple wavelengths.
Methods: We performed a cross-sectional study in patients with RA or PsA and healthy controls (HCs). Participants underwent clinical, ultrasonographic and MSOT examination of MCP and wrist joints as well as the entheses of the common extensor tendon at the lateral humeral epicondyles and of the patellar, quadriceps and Achilles tendon. MSOT-measured haemoglobin (Hb), oxygen saturation, collagen and lipid levels were quantified and scaled mean differences between affected and unaffected joints and entheses were calculated as defined by clinical examination or ultrasonography using linear mixed effects models.
Results: We obtained 1535 MSOT and 982 ultrasonography scans from 87 participants (34 PsA, 17 RA, 36 HCs). Entheseal tenderness was not associated with significant metabolic changes, whereas enthesitis-related sonographic changes were associated with increased total Hb, oxygen saturation and collagen content. In contrast, the presence of arthritis-related clinical and sonographic findings showed increased Hb levels, reduced oxygen saturation and reduced collagen content. Synovial hypertrophy was associated with increased lipid content in the joints.
Conclusion: MSOT allows determination of distinct metabolic differences between arthritis and enthesitis in a non-invasive setting in humans in vivo.