Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.