The therapeutic effect of photothermal therapy (PTT) and photodynamic therapy (PDT) is severely limited because of the shallow tissue penetration depth of the first near-infrared (NIR-I) light. Multifunctional nanotheranostics irradiated by the second near-infrared (NIR-II) light have received wide interest with respect to deeper tissue penetration, and sonodynamic therapy (SDT) synergistic phototherapy can achieve the complete elimination of tumors. Herein, we successfully constructed a single NIR-II light-induced nanotheranostic using cerium oxide (CeO2-x) with abundant oxygen vacancies for photoacoustic imaging-guided SDT-enhanced phototherapy for the first time. CeO2-x with surface crystalline disorder showed extensive NIR-II region absorption and an outstanding photothermal conversion ability. In addition, the CeO2-x layer with numerous oxygen defects can promote the separation of holes and electrons by ultrasound irradiation, which can remarkably enhance the efficacy of phototherapy to achieve high-efficiency tumor ablation. CeO2-x was surface modified with hyaluronic acid (HA) to prepare CeO2-x@HA to allow active tumor targeting efficiency. Both cell and animal experiments confirmed that all-in-one CeO2-x@HA exhibited a high therapeutic efficacy of SDT-enhanced PDT/PTT under 1064 nm laser irradiation, which achieved complete tumor eradication without systemic toxicity. This study significantly broadened the application of NIR-II-responsive CeO2-x for photoacoustic imaging-mediated SDT-enhanced phototherapy to the highly efficient and precise elimination of tumors.

Leave a Reply