Photocaging holds promise for the precise manipulation of biological events in space and time. However, current near-infrared (NIR) photocages are oxygen-dependent for their photolysis and lack of timely feedback regulation, which has proven to be the major bottleneck for targeted therapy. Herein, we present a hypoxia-dependent photo-activation mechanism of dialkylamine-substituted cyanine (Cy-NH) accompanied by emissive fragments generation, which was validated with retrosynthesis and spectral analysis. For the first time, we have realized the orthogonal manipulation of this hypoxia-dependent photocaging and dual-modal optical signals in living cells and tumor-bearing mice, making a breakthrough in the direct spatiotemporal control and in vivo feedback regulation. This unique photoactivation mechanism overcomes the limitation of hypoxia, which allows site-specific remote control for targeted therapy, and expands the photo-trigger toolbox for on-demand drug release, especially in a physiological context with dual-mode optical imaging under hypoxia.