Enhancing the heat-sensitivity of tumor cells provides an alternative solution to maintaining the therapeutic outcome of photothermal therapy (PTT). In this study, we constructed a therapeutic system, which was composed of methoxy-polyethylene-glycol-coated-gold-nanorods (MPEG-AuNR) and VER-155008-micelles, to evaluate the effect of VER-155008 on the sensitivity of tumor cells to heat, and further investigate the therapeutic outcome of MPEG-AuNR mediated PTT combined with VER-155008- micelles. VER-155008- micelles down-regulate the expression of heat shock proteins and attenuate the heat-resistance of tumor cell. The survival of HCT116 cells treated with VER-155008- micelles under 45 °C is equal to that treated with high temperature hyperthermia (55 °C) in vitro. Furthermore, we proved either the MPEG-AuNR or VER-155008- micelles can be accumulate in the tumor site by photoacoustic imaging and fluorescent imaging. In vivo anti-cancer evaluation showed that tumor size remarkably decreased (smaller than 100 mm3 or vanished) when treated with combing 45 °C mild PTT system, which contrasted to the tumor size when treated with individual 45 °C mild PTT (around 500 nm3) or normal saline as control (larger than 2000 nm3). These results proved that the VER-155008- micelles can attenuate the heat-resistance of tumor cells and enhance the therapeutic outcome of mild-temperature photothermal therapy.