For the integration of targeted diagnosis and treatment of tumor, we innovatively designed and synthesized a single-molecule hetero-multinuclear Er(III)-Cu(II) complex (ErCu2) and then constructed an ErCu2@apoferritin (AFt) nanoparticle (NP) delivery system. ErCu2 and ErCu2@AFt NPs not only provided an evident photoacoustic imaging (PAI) signal of the tumor but also effectively inhibited tumor growth by integrating photothermal therapy, chemotherapy, and immunotherapy. ErCu2@AFt NPs improved the targeting ability and decreased the systemic toxicity of ErCu2 in vivo. Furthermore, we confirmed that ErCu2 and ErCu2@AFt NPs inhibited tumor growth by inducing apoptosis and autophagy of tumor cells and activating the immune system. The study not only provides a novel strategy to develop therapeutic metal agents but also reveals their potential for targeted accurate diagnosis and multimodality therapy of cancer.