High-performance photothermal theranostics is urgently desired for cancer therapy because of their good controllability and noninvasive features. The relatively low photothermal conversion efficiency is still at the drawbacks because of the absence of efficient extraneous carriers. Herein, a carrier-free nanomedicine is developed to in vivo self-deliver organic photothermal agents for efficient cancer phototheranostics. By a facile self-assembly strategy, the near-infrared (NIR)-absorbing conjugated oligomer IDIC-4F is fabricated into a carrier-free nanoparticle (DCF-P), showing ultrasmall size of nearly 4.0 nm with a nearly 100% of drug loading capacity. Notably, DCF-P achieves a superhigh photothermal conversion efficiency of 80.5% that is far greater than that of IDIC-4F-loaded nanomicelle DCF-M (57.3%). With the guidance of NIR fluorescence and photoacoustic dual-imaging, it is verified that DCF-P could well achieve tumor-preferential accumulation and retention at 4 h postinjection, and meanwhile shows highly efficient in vivo tumor elimination with good biosafety. This study thus contributes a novel concept for designing ultrasmall nanoparticle characteristics of preferential accumulation in tumors, and also provides a strategy for creating high-performance carrier-free nanomedicine via highly ordered molecular stacking.