Nowadays, cancer is one of the most serious diseases threatening the health of human beings, and imaging-guided photothermal therapy (PTT) is rapidly emerging as a potent oncotherapy strategy due to its unique advantages of high efficiency, noninvasiveness, visualization, and accuracy. In this study, a multifunctional nanoplatform based on gadolinium ion chelated natural anthocyanins (ACNs) is reported, which can be used not only as an excellent photoacoustic/magnetic resonance (PA/MR) dual-modal contrast agent but also for imaging-guided tumor PTT. The nanoparticles obtained have a suitable size, good dispersity, and physiological stability. The excellent biocompatibility and remarkable photothermal effect of the nanoparticles in vitro were demonstrated by CCK-8 assays and co-staining experiments. Moreover, the magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) results obtained in vivo showed that the nanoparticles were ideal dual-modal contrast agents whether given by intravenous or intratumoral injection. After intratumoral injection, the dual-modal PAI/MRI was used for determining the maximum diffusion time of the probe in the tumor site to guide laser treatment, achieving complete tumor elimination without normal tissue injury. Importantly, ACN is a natural compound extracted from black carrots, possessing native biocompatibility and biodegradability, which was further proved by the results of the detailed safety evaluation. Overall, the as-prepared nanoparticles displayed significant tumor diagnosis and treatment effects while mitigating biosafety concerns, and thus this was found to be a promising nanotherapeutic method for cancer treatment.

Leave a Reply