Sub-3 nm ultrasmall Bi2Se3 nanodots stabilized with bovine serum albumin were successfully synthesized through a reaction of hydroxyethylthioselenide with bismuth chloride in aqueous solution under ambient conditions. These nanodots exhibit a high photothermal conversion efficiency (η = 50.7%) due to their strong broad absorbance in the near-infrared (NIR) window and serve as a nanotheranostic agent for photoacoustic imaging and photothermal cancer therapy. In addition, they also display radioenhancement with a ratio of 6% due to their sensitivity to X-rays, which makes them a potential sensitizer for radiotherapy. These nanodots were also labled with radioactive 99mTc for quantification of their biodistribution by single-photon-emission computed tomography (SPECT)/computed tomography (CT) imaging. Our work demonstrates the potential of ultrasmall Bi2Se3 nanodots in multimodal imaging-guided synergetic radiophotothermal therapy of cancer.

Leave a Reply